# 산업용보일러의 고효율 연소촉진제 및 중질유 분산제 개발에 의한 Dust, NOx 저감기술 개발

#### 2004. 4. 23

• 연구 수행 기관 : 한국에너지기술연구원

• 연구 수행 책임자 :

• 참 여 기 업 : 테크노바이오



# 목 차

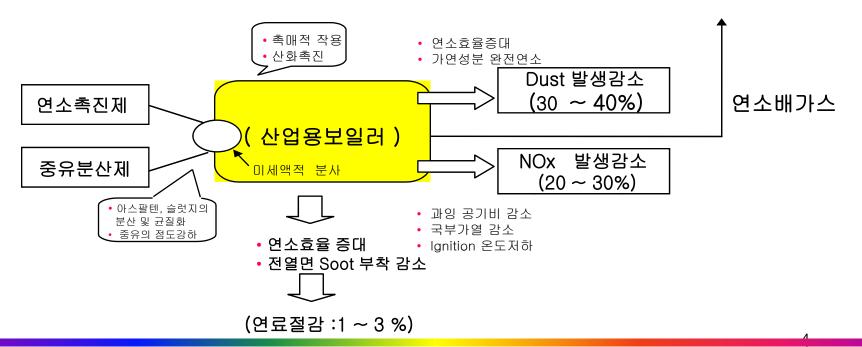
- 1. 연구개발의 필요성 및 목표
- 2. 중유 연소시 Dust 발생증가의 원인분석
- 3. 연료 첨가제에 의한 Dust, NOx의 저감과 열효율 향상 방안
- 4. 1차년도 실험내용 및 결과
  - 가. Dust 발생 원인물질(Asphaltene)의 분석 및 분산성 평가 실험
  - 나. 연소실험용 보일러 시스템 설치
  - 다. 연료첨가제(A)에 의한 Dust저감 효과 및 열효율 상승효과 실험
- 5. 향후 실험 대상의 연료 첨가제 범주 및 실험계획
  - 분산제, 연소촉진제, 산소공급제(Oxygenate)



#### ○ 연구개발의 필요성 및 목표

- ▷ 총먼지 /PM10 /PM2.5 : 호흡기질환, 시정장애, 발암물질
- ▷ NOx는 오존발생의 원인물질로서 배출허용기준치가 점차 강화되고 있음
- ▷ 발생된 Dust의 후처리 기술(End of Pipe Technology)은 상당한 수준이나 연소설비 내에서의 발생 자체를 줄이기 위한 기술개발 실적은 거의 없는 상황임

#### - 유류 보일러의 먼지(Dust), NOx 배출허용기준


| 보일러 용량(배출가스량: m³/h)     | 2004. 12. 31까지              | 2005. 1. 1.이후               | * 전국 보일러 대수 |
|-------------------------|-----------------------------|-----------------------------|-------------|
| <u>Dust</u>             |                             |                             |             |
| 6,000 ~ 30,000 (기존, 신규) | 100(4)mg/Sm³이하              | 80(4)mg/Sm³이하               | 8,231대      |
| 6,000이하(신규)             | 150(4) "                    | 100(4) "                    | 31,187대     |
| <u>NOx</u>              |                             |                             |             |
| 100,000이상 기존            | 250(4)mg/Sm <sup>3</sup> 이하 | 250(4)mg/Sm <sup>3</sup> 이하 |             |
| 신규                      |                             | 70(4)mg/Sm³이하               |             |
| 10,000 ~ 100,000미만 기존   | 250(4)mg/Sm³이하              | 250(4)mg/Sm <sup>3</sup> 이하 |             |
| 신규                      |                             | 200(4)mg/Sm <sup>3</sup> 이하 |             |

<sup>\*</sup>보일러 대수는 에너지관리공단 검사대상 전체보일러(유류,가스) 기준임



- 집진시설(Multi-cyclone, Bagfilter, EP) 추가설치의 부작용:
  - 설치 및 운전유지비용, 설치장소의 협소, 바이패스 운전
  - 보일러 연소효율, 열효율 감소의 원인이 되기도 함
- 연소로내 자체에서 Dust, NOx발생을 저감: 청정기술로서 처리비의 부담감소, 자발적 처리등 환경적 경제적 면에서 바람직함

#### - 연구 개발의 목표



#### ○ 중유 연소시 Dust 발생 증가의 원인 분석

- 보일러(10Ton/Hr용량)에 경유, 중유 연소시의 Dust 발생 농도 비교 경유: 20~30mg/Sm³, 중유(S 1.0%): 100~150mg/Sm³

- 중유 보일러 배출먼지의 성상

|                  |      |      | 성분   |      |     | 발열량       |
|------------------|------|------|------|------|-----|-----------|
| 채취점              | 고정탄소 | 휘발유  | 회분   | 수분   | 유황분 | (Kcal/kg) |
| Cyclone · Bottom | 63.7 | 16.6 | 12.6 | 3.9  | 3.2 | 6,700     |
| <i>"</i> 후단      | 35.5 | 22.2 | 22.4 | 12.0 | 7.9 | 5,200     |

자료: 공해방지기술개론, 일본에너지기술협회(1994)

• 가연성 성분(휘발분, 고정탄소)이 완전연소 될 경우 먼지발생량을 절반이하로 감소 가능



- 중유 연소시 Dust 발생 기여 성분
- (1) 중유중의 아스팔텐 성분: 연소 속도가 늦고 Coke를 형성하여 잔류탄소분을 증대 H/C원자비가 작을수록 연소성 저하 ex) CH₄: 4, 벤젠: 1, 아스팔텐<1
- (2) 아스팔텐의 응집현상(Flocculation)에 의한 왁스, 협잡물과의 슬럿지를 형성 → 연소장애 → Dust 발생 증가 슬럿지 성분은 버너 분사시 액적의 미립화, 균질화를 방해하고 연소성 불량의 원인이 됨
- (3) Coke의 연소 연소속도가 늦고 Heterogeneous surface reaction에 의해 산소 결핍(Oxygen Poor) 분위기를 가져옴.(즉, 산소의 확산속도보다 연소반응에 의해 소진되는 속도가 빠르므로 산소결핍 현상유발)

### ○ 연료 첨가제(Fuel additive)에 의한 중유 연소시 Dust, NOx 저감과 열효율 향상

| 저감 방안                | 연료 첨가제 예          | 효과                               |
|----------------------|-------------------|----------------------------------|
| 1) 분산제에 의한 아스팔텐,     | 음이온 계면활성제         | - 중유의 점도, 계면장력 저하                |
| 슬럿지의 분산              | 비이온 계면활성제         | - 버너 분사시 미립화, 균질화                |
|                      |                   | - 과잉 공기비의 감소                     |
| 2) 연소촉진제의 의한 아스팔텐    | Cu, Fe, Ni, Mn 등의 | - 산소와의 반응성 증대                    |
| Cokes분의 연소 촉진        | 유용성 유기금속화합물       | - HO, HO <sub>2</sub> 라디칼 발생에 의한 |
|                      |                   | 산화반응 촉진                          |
|                      |                   | - Ignition 온도를 낮춤                |
| 3) *Oxygenate(산소공급제) | 알콜, 케톤류           | - 연소장내 산소 공급에 의한                 |
|                      |                   | 연소촉진                             |
| 4) 연료첨가제 중의 저비점 물질   |                   | - 저비점 물질의 증발에 의한                 |
| 의 증발에 의한 미세폭발현상      |                   | Micro-explosion현상으로 연소           |
|                      |                   | 효율 증대                            |

<sup>\*</sup> Diesel의 경우 산소 1wt%증가시 PM 10% 감소 효과

#### ○ 분산제, 연소촉진제에 의한 NOx저감과 열효율 상승효과

- NOx 저감 요인: ① 과잉 공기비 감소, ② 국부가열 방지, ③ Ignition온도저하
- 열효율 상승(연료 절감)효과 노내 Soot발생 및 전열면 Soot부착 감소 전열면에 Soot가 0.8mm 부착시 약2%의 연료 사용량 증가(Fig 참조)

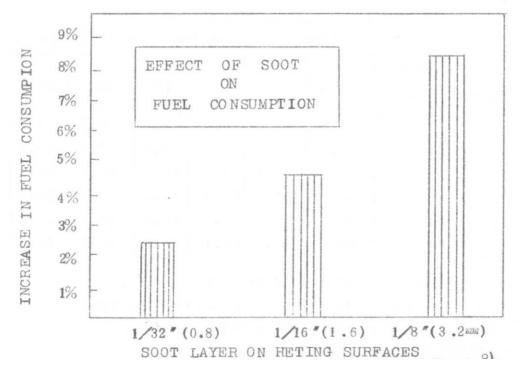



Fig 전열면에 Soot의 부착으로 인한 연료소비 증가율

## 외국의 연료 첨가제 연구, 적용 사례분석

일본, 竹仁染化

|                                                             | 사용전                                                     | 사용후                                                              |
|-------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|
| 연료 및 연소 상태 - 연료배관의 스트레나 청소주기 - 버너 오염현 - 연소 상태 - 전열면 Soot 부착 | 1주<br>분사노즐, 버너타일에<br>카본부착<br>화염이 다소 불안정<br>카본 및 Soot 부착 | 1~2개월<br>카본부착 주기가 2~3배<br>늦어짐<br>화염의 안정 및 완전연소<br>카본 및 Soot 부착감소 |
| 보일러효율                                                       | 84%                                                     | 86%                                                              |
| 공해물<br>- NOx<br>- Dust                                      | 250ppm<br>140mg/Nm <sup>3</sup>                         | 196ppm<br>110mg/Nm <sup>3</sup>                                  |

자료 : 연소공학 Guide, 연소사(일본)



### < 1차년도 실험내용 및 결과>

### ○ 시료 중질유(S 0.3wt%, 1.0 wt%)의 분석치

|          | 항목  | С    | Н    | N    | S    | 0   | Ash  | 수분   |
|----------|-----|------|------|------|------|-----|------|------|
|          |     |      |      |      |      |     |      |      |
| S 0.3wt% | wt% | 86.7 | 11.8 | 0.31 | 0.27 | 0.1 | 0.01 | 0.05 |
|          |     |      |      |      |      |     |      |      |
| S 1.0wt% | wt% | 86.3 | 12.0 | 0.38 | 0.97 | 0.3 | 0.02 |      |
|          |     |      |      |      |      |     |      |      |

| 항목       | 발열량       | 비중      | 점도        |
|----------|-----------|---------|-----------|
|          | (Kcal/kg) | (15/4℃) | (50℃ SFS) |
| S 0.3wt% | 10,677    | 0.919   | 59        |
| S 1.0wt% | 10,484    | 0.940   | 90        |

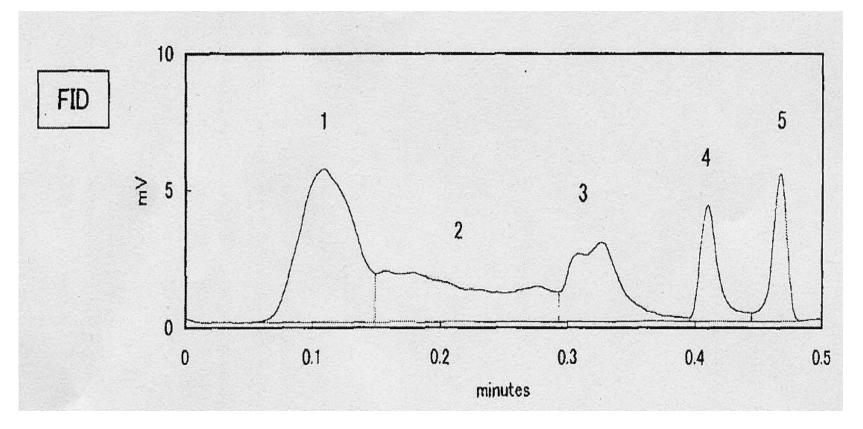
### ○ 시료 중유의 Dust발생 원인물질(Asphaltene)분석

- 분석방법

장 치: Thin Layer Chromtogragh(TLC-FID)

분석치: Saturated HC, Aromatics, Resin, Asphaltene

- 분석결과


(Area%)

| 시료 중유    | Saturated HC | Aromatics | Resin | Asphaltene |
|----------|--------------|-----------|-------|------------|
| S 0.3%중유 | 47,297       | 39,115    | 6,723 | 6,856      |
| S 1.0%중유 | 37,522       | 43,362    | 9,514 | 9,592      |

- 중유의 Asphaltene 및 잔류 분순물 함량

| 항목               | 유황분 0.3% | 유황분 1.0% | 유황분 4.0% |
|------------------|----------|----------|----------|
| Asphaltene(wt.%) | 2.41     | 3.68     | 7.46     |
| 잔류불순물 (wt.%)     | 0.12     | 0.16     | 0.10     |

### Fig 시료 중유의 조성 분석(S 0.3%중유)



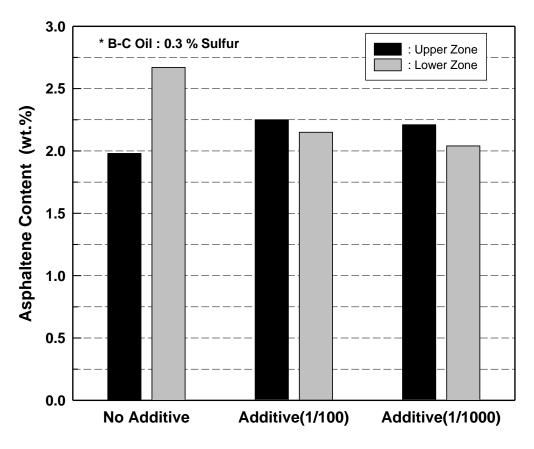
1 : Saturated H.C, 2 : Aromatic,

3 : Polyaromatic,

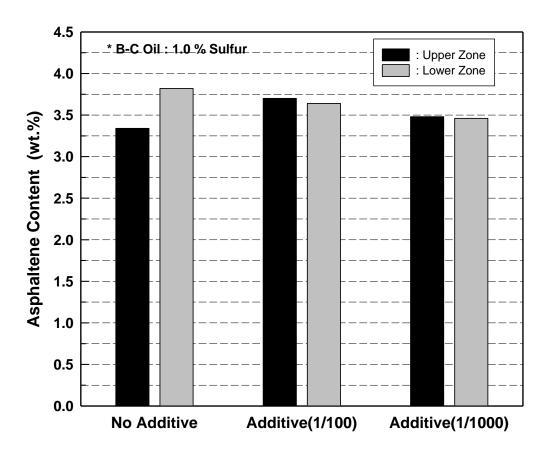
4 : Resin,

5 : Asphaltene

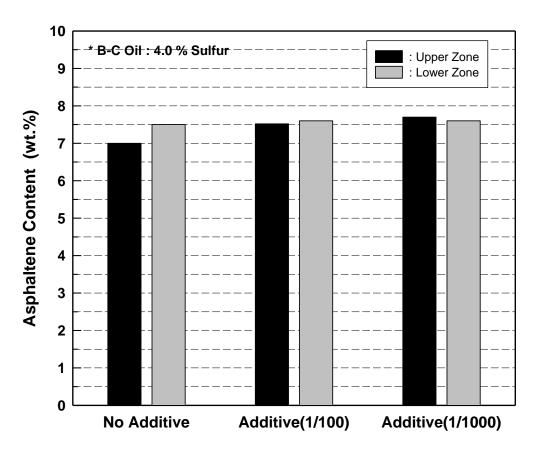
#### ○ 분산제에 의한 중유 중의 Asphaltene, 슬럿지의 분산성 실험


- 사용 첨가제: 연료 첨가제(A)

•첨가량 : 중유량의 1/1000 Vol.


- 분산성 측정방법 : 시료중유, 중유+ Additive를 50ml실험관에 각각 넣고 일정온도(25℃)에서 12,000rpm의 속도로 20분간 원심분리 → 상부, 하부의 Asphaltene함량 비교 (Asphaltene함량은 ASTM D3279 - 97의 측정법 적용)

- 측정 결과 유황분 0.3wt%, 1.0wt%, 4.0wt%의 시료 중유에 연료첨가제(A)를 투입시 상부, 하부 Asphaltene 농도가 균질- 분산성 향상을 나타냄

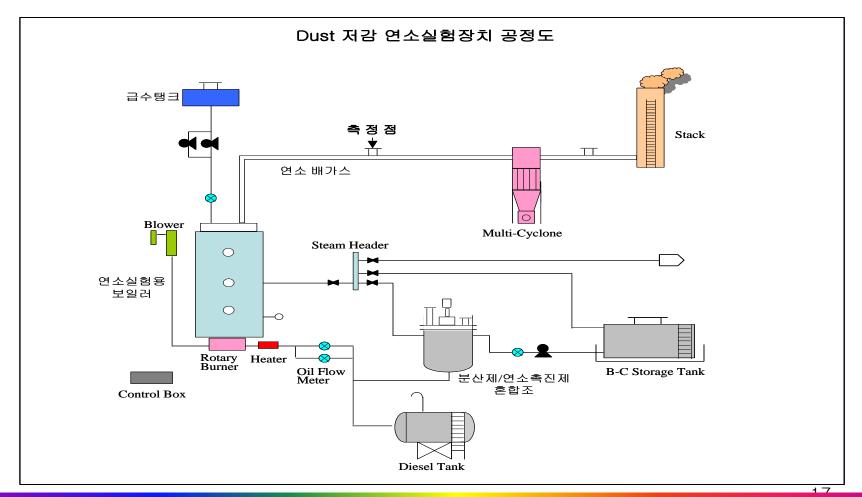

### - 분산성 실험결과



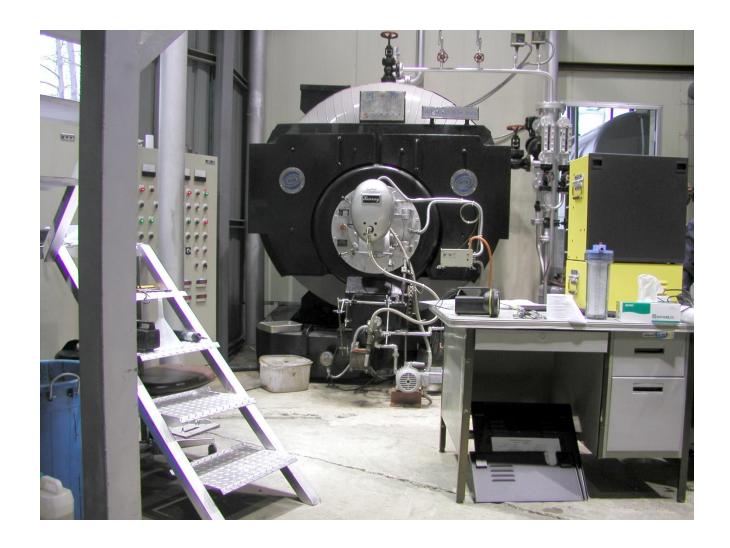
연료첨가제 투입에 따른 분산성 변화 1



연료첨가제 투입에 따른 분산성 변화 2




연료첨가제 투입에 따른 분산성 변화 3


#### ○ 연료 첨가제(A)에 의한 Dust 저감 효과 실험

- 연소 실험용 보일러 시스템의 설치

용량: 증기발생량 1.5Ton/Hr (중유 Max. 약 120Kg/Hr 연소)



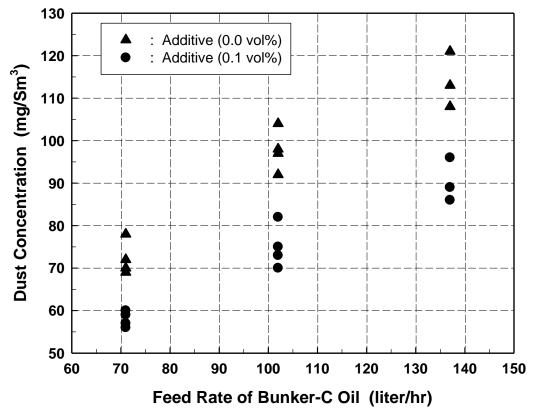
### 중유 연소 실험보일러(전면)



### 중유 첨가제 혼합용 혼합조



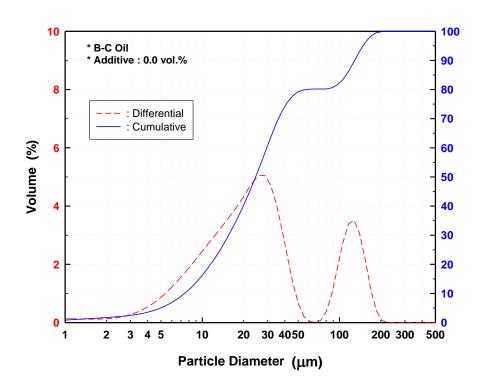
### 미세먼지(Dust) 배출 농도 측정 부위




### ○ 연료 첨가제(A)에 의한 Dust 배출농도 감소 효과

중유 연소시 Dust 배출농도: 70~120mg/Sm<sup>3</sup>

중유 + 첨가제 Dust 배출농도: 55~95mg/Sm<sup>3</sup>


Dust 저감율: 20~25%

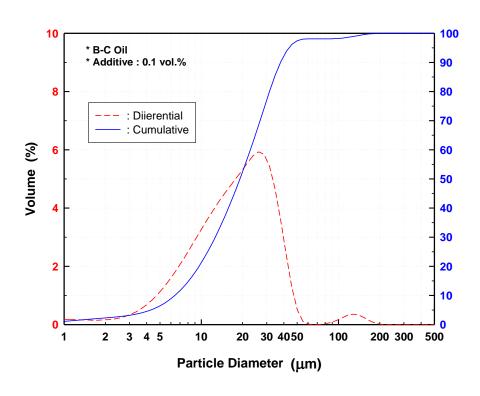


보일러 부하에 따른 Dust 발생농도 (중유/ 중유+Additive 비교 실험)



#### ○ Dust의 입경분포 1 ( 중유 )




- □ 첨가제 투입량: 0.0 Vol%
- □ O<sub>2</sub> 농 도 : 4.0%
- □ Mean Diameter: 41.10 µm,

Medium Diameter: 23.38 µm

S.D.(Standard Deviation): 44.56  $\mu$ m

C.V.(Coefficient of Vailation): 108%

#### ○ Dust의 입경분포 2 (중유 + Additive)



- 첨가제 투입량: 0.1 Vol%
- □ O<sub>2</sub> 농 도:4.0%
- Mean Diameter: 21.42 µm,

Medium Diameter: 18.27 µm

S.D.(Standard Deviation): 18.80 \( \mu \)

C.V.(Coefficient of Vailation): 87.7%

### ○ Dust 분석 결과

|                    | 공업분석(wt%) |       |      |          | 원 <i>:</i> | Ն 분석(w | t%)  |      | 발열량<br>(Kcal/<br>kg) |       |
|--------------------|-----------|-------|------|----------|------------|--------|------|------|----------------------|-------|
|                    | 수분        | 휘발분   | 회분   | 고정<br>탄소 | 탄소         | 수소     | 질소   | 유황분  | 산소                   |       |
| Dust 1<br>(No 첨가제) | 13.36     | 16.28 | 5.97 | 64.39    | 89.30      | 1.25   | 1.94 | 1.10 | 1.54                 | 7,370 |
| Dust 2<br>(첨가제)    | 20.10     | 12.03 | 2.40 | 65.47    | 88.35      | 1.27   | 1.93 | 1.43 | 4.62                 | 6,340 |

<sup>-</sup> 첨가제 Dust의 경우 연소성 증대효과 (휘발성, 발열량 감소)

#### ○ 보일러 열효율 실험결과

|     | 중유(S 0.3wt%) | 중유+첨가제(A) | 비고      |
|-----|--------------|-----------|---------|
| 열효율 | 84.1%        | 86.4%     | 보일러부하율: |
|     |              |           | 90%     |

- 열효율 상승 효과에 대한 메카니즘은 향후 장기간의 실험을 통하여 규명 예정임



## - 연료첨가제(A)의 현장보일러 적용실험 결과

| 회사명      | H㈜ - 충북 청원군                                     |                                              |                                                              |                        |  |
|----------|-------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|------------------------|--|
| 항 목      | 내                                               | 비고                                           |                                                              |                        |  |
| 보일러      | 형식<br>사용연료<br>정격증발량                             | 스팀분사(Z)형<br>중유(유황분: 1w<br>30,000 K           | vt%)<br>(g/hr                                                | 수관식<br>공급회사: SK<br>MCR |  |
| 연료첨가제    | 첨가제 종류<br>첨가비율<br>사용개시일                         | 연료첨가제(A)<br>1,000: 1<br>2004년. 1월. 일         | 11<br>2                                                      | 실험일: 2004. 3. 12       |  |
|          | 분진농도<br>(Multi-cyclone후단)<br>집진 장치에<br>포집된 분진무게 | 첨가후 15n<br>첨가전 30k                           | mg/Sm <sup>3</sup><br>mg/Sm <sup>3</sup><br>Kg/day<br>Kg/day | 평균 현장부하율 일때<br>"       |  |
| 보일러 성능변화 | Nox농도                                           |                                              | Oppm<br>Oppm                                                 | "                      |  |
|          | 0 <sub>2</sub> 농도                               | 첨가전 4.5 <sup>c</sup><br>첨가후 3.5 <sup>c</sup> |                                                              | n/                     |  |
|          | 보일러 열효율                                         | 첨가전 88<br>첨가후 89~                            | ~90                                                          | "                      |  |
|          | 기타의견                                            |                                              | 소실 Soot가<br>소실 전열면                                           |                        |  |

### ○ 1차년도 결론(결과 요약)

- 1) 중질유의 Dust 발생에 기여하는 성분의 분석, 평가
  - 시료 중유별 Asphaltene의 함량분석과 첨가제(A)에 의한 Asphaltene의 분산 효과 계측
- 2) Asphaltene, 슬럿지의 분산 및 연소촉진을 위한 대상 첨가제의 범주 설정
- 3) 연소 실험용 보일러 시스템 및 Dust계측장치의 설치
  - 증기발생용량 1.5Ton/Hr 보일러 시스템
- 4) 연료첨가제(A)에 의한 Dust발생 저감율은 약 25% 달성
- 5) 열효율 상승효과 : 약 2% 상승
  - 향후 장기간의 연소 실험을 통한 전열면에 Soot 부착성, 열효율 상승 메카니즘 규명이 필요.
- 6) 향후 분산제, 연소 촉진제 개발 실험과 중유 연소 보일러에 적용실험을 통하여 Dust 발생 30~40%, NOx 20%의 저감과 연료 절감 1~3%의 목표 달성은 가능할 것으로 평가됨.



### ○ 향후 수행계획(2차년도)

- 1) 적정분산제의 선택 실험 지속
  - 중질유 종류별 Asphaltene, 슬럿지의 분산성 평가 지속
  - 가격 및 성능을 고려한 적정분산제의 선택 실험
- 2) 적정 연소촉진제, 산소공급제(Oxygenate)의 선택 실험
  - 1차년도에 설치한 중유 연소 보일러 시설에서의 연소실험 (산업체 현장 보일러의 경우 적용 실험은 가능하나 연소촉진제 개발을 위한 표준화 실험은 불가)
  - 연소성 향상 및 Dust 감소 실험을 통한 적정 연소촉진제 및 산소공급제 선택
- 3) 분산제, 연소촉진제, 산소공급제 사용시 NOx 발생특성 및 저감실험
- 4) 보일러 열효율 상승효과 분석 실험
  - 전열면 Soot 부착현상
  - 과잉 공기비, 배가스 온도의 변화
  - 열효율 상승효과